7,881 research outputs found

    Metais pesados em agregados de solo submetido à aplicação sucessiva de lodo de esgoto.

    Get PDF
    RESUMO: A aplicação de lodo no solo é uma importante alternativa de reciclagem desse tipo de resíduo, de forma a manter os níveis de fertilidade do solo e promover a produtividade competitiva das culturas. No entanto , a presença de metais pesados pode limitar seu uso , sendo que o presente trabalho teve por objetivo avaliar os teores totais de alguns metais pesados e sua distribuição em classes de agregado em função da aplicação sucessiva de lodo de esgoto num solo agrícola . O estudo foi realizado no Campo Experimental da Embrapa Meio Ambiente - Jaguariúna (SP) e foram analisados 3 tratamentos: controle, adubação mineral e 1N (10 t ha - 1 ano - 1 de lodo em base seca ), na profundidade 0 -5 cm. O solo coletado foi passado empeneira de 9 ,5 2 mm de abertura e fracionado em agregados com dimensões: entre 9,52 - 4,00, entre 4,00 - 2,00mm, entre 2,00 - 0,25mm, entre 0,25 - 0,053mm, e menor que 0,053mm. Os teores totais de metais pesados do solo intacto e das classes de agregado foram quantificados por ICP-OES após extração seguindo procedimento da USEPA 3051. Não houve diferença significativa dos tratamentos na distribuição dos agregados do solo por classe de diâmetro. O lodo de esgoto elevou os teores de Cu, Ni e Zn. porém apresentaram baixos teores quando ponderados pela massa. A aplicação do lodo proporcionou aumento dos teores de metais principalmente nas classes de agregado 2,00-0,25mm e 0,25-0,053mm

    Hydro-wind optimal operation for joint bidding in day-ahead market: storage efficiency and impact of wind forecasting uncertainty

    Get PDF
    Wind power production is uncertain. The imbalance between committed and delivered energy in pool markets leads to the increase of system costs, which must be incurred by defaulting producers, thereby decreasing their revenues. To avoid this situation, wind producers can submit their bids together with hydro resources. Then the mismatches between the predicted and supplied wind power can be used by hydro producers, turbining or pumping such differences when convenient. This study formulates the problem of hydro-wind production optimization in operation contexts of pool market. The problem is solved for a simple three-reservoir cascade case to discuss optimization results. The results show a depreciation in optimal revenues from hydro power when wind forecasting is uncertain. The depreciation is caused by an asymmetry in optimal revenues from positive and negative wind power mismatches. The problem of neutralizing the effect of forecasting uncertainty is subsequently formulated and solved for the three-reservoir case. The results are discussed to conclude the impacts of uncertainty on joint bidding in pool market contexts.info:eu-repo/semantics/acceptedVersio

    Dynamics of Microbial Communities in Phototrophic Polyhydroxyalkanoate Accumulating Cultures

    Get PDF
    DFA/BD/8201/2020 UIDP/04378/2020 UIDB/04378/2020 LA/P/0140/2020Phototrophic mixed cultures (PMC) are versatile systems which can be applied for waste streams, valorisation and production of added-value compounds, such as polyhydroxyalkanoates (PHA). This work evaluates the influence of different operational conditions on the bacterial communities reported in PMC systems with PHA production capabilities. Eleven PMCs, fed either with acetate or fermented wastewater, and selected under either feast and famine (FF) or permanent feast (PF) regimes, were evaluated. Overall, results identified Chromatiaceae members as the main phototrophic PHA producers, along with Rhodopseudomonas, Rhodobacter and Rhizobium. The findings show that Chromatiaceae were favoured under operating conditions with high carbon concentrations, and particularly under the PF regime. In FF systems fed with fermented wastewater, the results indicate that increasing the organic loading rate enriches for Rhodopseudomonas, Rhizobium and Hyphomicrobiaceae, which together with Rhodobacter and Chromatiaceae, were likely responsible for PHA storage. In addition, high-sugar feedstock impairs PHA production under PF conditions (fermentative bacteria dominance), which does not occur under FF. This characterization of the communities responsible for PHA accumulation helps to define improved operational strategies for PHA production with PMC.publishersversionpublishe

    Haptoglobin, acid phosphatase and demographic factors: obesity risk

    Get PDF
    The aim of this work is to study the risk of obesity posed by two genetic factors: haptoglobin phenotype and acid phosphatase phenotype, one enzymatic activity: acid phosphatase activity (ACP1), age and gender. Haptoglobin (Hp) is a protein of the immune system, and three phenotypes of Hp are found in humans: Hp1-1, Hp2-1, and Hp2-2. This protein is associated with a susceptibility to common pathological conditions, such as obesity. ACP1 is an intracellular enzyme The phenotypes of ACP1 (AA, AB, AC, BB, BC, CC) are also considered. We took a sample of 127 subjects with complete data from 714 registers. Since we intend to identify risk factors for obesity, an ordinal regression model is adjusted, using the Body Mass Index, BMI, to define weight categories. Haptoglobin phenotype, enzymatic activity of ACP1, acid phosphatase phenotype, age and gender are considered as regressor variables. We found three factors associated with an increased risk of obesity: phenotype Hp2-1 of haptoglobin (estimated odds ratio OR 11.54), phenotype AA of acid phosphatase (OR 33.788) and age (OR 1.39). The interaction between phenotype Hp2-1 and phenotype AC is associated with a decreased risk of obesity (OR 0.032); The interaction between phenotype AA and ACP1 activity is associated with a decreased risk of obesity (OR 0.954)

    Biopolymer monitoring using quantitative image analysis techniques

    Get PDF
    Polyhydroxyalkanoates (PHAs) are intracellular biopolymers with many applications, particularly as substitutes of polypropylene and polyethylene, due to their thermoplastic properties and biocompatible nature. Furthermore, glycogen is a polysaccharide of glucose with high importance in the metabolism of microbial communities and polyphosphate is a microbial storage compound that should be recovered in order to offset the worldwide depletion of phosphorus sources. The determination of these biopolymers by chemical analysis is a laborious task, often involving digestion processes prior to gas and high-performance liquid chromatography, which are time consuming and difficult to apply in industry. Currently, it is important to develop new, rapid and simple techniques to monitor these polymers. Image analysis is a non-invasive and rapid technique that has the potential to be used to quantify these intracellular polymers quickly, in real-time. Mesquita et al. (2013) showed that it is possible to predict the concentration of glycogen and PHAs by quantitative image analysis, using aniline blue and nile blue staining, respectively. Polyphosphate can also be predicted by this technique through DAPI staining, which is currently under development. These biopolymers are produced by several different microorganisms, and combining their quantification with fluorescence in situ hybridization (FISH) techniques for microbial identification can enable the determination of organisms that store high quantities of each biopolymer. In this work, an advanced quantitative technique is developed to perform real time monitoring of these three biopolymers in a bioreactor performing biological phosphorus removal. Image analysis of the biopolymers was combined with FISH to determine the storage level of each compound within the different microbial populations. This technique will further enable the assessment of biopolymer levels within microbial communities, which can be applied in the biopolymer production industry
    corecore